US009268855B2

a2z United States Patent (10) Patent No.: US 9,268,855 B2
Goyal et al. 45) Date of Patent: Feb. 23, 2016
(54) PROCESSING REQUEST KEYS BASED ON A HO4L 63/16; GOG6F 17/309979; GOGF

(71)
(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

KEY SIZE SUPPORTED BY UNDERLYING
PROCESSING ELEMENTS

Applicant: Cavium, Inc., San Jose, CA (US)

Inventors: Rajan Goyal, Saratoga, CA (US);
Kenneth Bullis, Los Altos, CA (US)

Assignee: CAVIUM, INC., San Jose, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 128 days.

Appl. No.: 14/150,550

Filed: Jan. 8,2014
Prior Publication Data
US 2015/0195262 Al Jul. 9, 2015
Int. CI.
HO04L 29/06 (2006.01)
GOGF 17/30 (2006.01)
U.S. CL
CPC ... GOG6F 17/30864 (2013.01); HO4L 63/0227

(2013.01)

Field of Classification Search
CPC . HO4L 63/02; HO4L 63/0227;, HO4L 63/0245;
HO4L 63/0263; HO4L 63/14; HO4L 63/1408,;

FTP
SERVER

115

135

INTRANET
SERVER

DATABASE

CORPORATE
NETWORK

17/30988
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,192,051 B1* 2/2001 Lipmanetal. 370/389

* cited by examiner

Primary Examiner — Edward Zee
(74) Attorney, Agent, or Firm — Lathrop & Gage LLP

(57) ABSTRACT

A packet classification system, methods, and apparatus are
provided for packet classification. A processor of a router
coupled to a network processes data packets received from a
network. The processor creates a request key using informa-
tion extracted from a packet. The processor splits the request
key into an n number of partial request keys if at least one
predetermined criterion is met. The processor also sends a
non-final request that includes an i-th partial request key to a
corresponding search table of an n number of search tables,
wherein i<n. Further, the processor receives a non-final
search result from the corresponding search table. The pro-
cessor sends a final request that includes an n-th partial
request key and the non-final search result. The processor
receives a final search result from the corresponding search
table and processing the packet based on processing data
included in the final search result.

18 Claims, 19 Drawing Sheets

(PROTECTED NETWORK)

/101

ROUTER/PACKET INTERNET/
CLASSIFIER PUBLIC NETWORK
100

105

RULES
DATA CENTER
140

U.S. Patent Feb. 23,2016 Sheet 1 of 19 US 9,268,855 B2

FTP
SERVER

135

115
/ (PROTECTED NETWORK)
INTRANET
SERVER

/101

DATABASE

! ’ <130

120

/125

150 | =0

ROUTER/PACKET
CLASSIFIER
100

INTERNET/
PUBLIC NETWORK
105

CORPORATE
NETWORK

RULES

DATA CENTER
140

FIG. 1

U.S. Patent Feb. 23,2016 Sheet 2 of 19 US 9,268,855 B2

/ 200

MEMORY
210
PACKET
OPERATING CLASSIFICATION
SYSTEM SERVICES
215 220
245
PROCESSOR
250 225
<
N NETWORK
STORAGE INTERFACE
DEVICE 240
230
535 RULES
DB TO/FROM
N~ NETWORK 105,115
AND DATA CENTER 140

FIG. 2

U.S. Patent

Feb. 23, 2016

Sheet 3 0f 19

335 3(130 3(135

RULE FIELD-1 (X-RANGE) FIELD-2 (Y-RANGE)
R1 0-31 0-255

R2 0-255 128-131

R3 64-71 128-255

R4 67-67 0-127

R5 64-71 0-15

R6 128-191 4-131

R7 192-192 0-255

FIG.3

US 9,268,855 B2

/300

U.S. Patent Feb. 23,2016 Sheet 4 of 19 US 9,268,855 B2

255 L, _r

A

410 -

v | B A
R4 —
R1
0 » 255
X

FIG.4

U.S. Patent Feb. 23,2016 Sheet 5 of 19 US 9,268,855 B2

501

(256%256,X,4)

(64%256,Y, 2)
R7

530
R4 R2
R5 R3
515 520

FIG.5

U.S. Patent Feb. 23,2016 Sheet 6 of 19 US 9,268,855 B2
/ 600
605a 6(;\5b 605d
TCPSrc(16) TCPDst(16) Prot(8) IPSrc(32) IPDst(32)
605c¢ 605e

FIG.6

U.S. Patent Feb. 23,2016 Sheet 7 of 19 US 9,268,855 B2
720a
(Packet)
Incoming 795
":‘J o
o o
a o
v \ A
\ 730 Key Request
g--0 0>
PACKET > Search
PROCESSING
735 Processor
UNIT Ke
Y
710 «oo..o Request 715
- Response
o _
: 705 (Data Plane)
a
/- v \\ 700
720b (Router)
(Processed Packets)
QOutgoing

FIG.7

U.S. Patent Feb. 23,2016 Sheet 8 of 19 US 9,268,855 B2

805 800
(START ; /

v r810

Receive a packet

" /‘815

Create a request key

v f 820

Split the request key into an n number of partial request keys if a
predetermined criteria is met

v /‘ 825

Send a non-final request that includes an i-th partial request key to a
corresponding search table of an n number of search tables

v K‘ 830

Receive a non-final search result

) /‘ 835

Send a final request that includes an n-th partial request key and the non-final search
result received in response to sending a non-final request including the
request key to the corresponding search table

v / 840

Receiving a final search result

" /‘ 845

Processing the packet

850

y
END

FIG.8

U.S. Patent Feb. 23,2016 Sheet 9 of 19 US 9,268,855 B2

FIELD-X FIELD-Y FIELD-Z

905a \ /‘ 905b

FIELD-X FIELD-Y FIELD-Z

FIG.9

U.S. Patent Feb. 23, 2016 Sheet 10 of 19

US 9,268,855 B2

//'1058

1050
TREE

R1

1052

R7

R5

l’bmm
~ 1056 RULE TABLE

R1,R5,R7 <1054

BUCKET

FIG. 10A

U.S. Patent Feb. 23,2016 Sheet 11 of 19 US 9,268,855 B2

1070

1072

1074 1080

N

1087
1083d
1076 1078 1083c
1083a

1083b

FIG.10B FIG.10C

U.S. Patent

Feb. 23, 2016 Sheet 12 of 19

US 9,268,855 B2

1100

s

START 1105

Determine fields
for current —2-1110
phase

Compile
current
phase

<1130

Compile current END
phase. Produce
rules for next
phase

<1120

l

Take next-phase

rules as input 1125

FIG.11

1135

U.S. Patent Feb. 23, 2016

/" 1205

/‘1210

Sheet 13 of 19

/‘1215

US 9,268,855 B2

/1200

/‘1220

RULE FIELD-1(X) FIELD-2(Y) FIELD-3(2)
R1 1-8 5-14 10
R2 4-13 2-10 20
R3 5-14 8-13 30

FIG.12

U.S. Patent

START 1305

Feb. 23, 2016

Sheet 14 of 19 US 9,268,855 B2

COMPILATION ALGORITHM
1300

5

Queue root
node

- 1315

1320

Yes
1370

Dequeue
Node

21325

v

Remove covered
rules

21330

Rules small
enough for

leaf
?

No

/1340

1350

Already
processed

intersections
?

Yes

No

/‘1355

Output
node

Process
intersections

vy [~

1365
74

Create and queue
child nodes

Output
leaf

FIG.13

U.S. Patent Feb. 23,2016 Sheet 15 of 19 US 9,268,855 B2

1400

START 1405

Identify logical segments in a range of values of the

dimensions associated with the current leaf node 1410
Assign a cookie value to each unique list of rules associated
with each segment 1415
Output a next-phase rules set and compile a new rule set
for the current leaf node 1420

END 1425

FIG. 14A

U.S. Patent

255

1470 —2

255

1470 —24

Feb. 23, 2016 Sheet 16 of 19 US 9,268,855 B2

—

R2

» 255
X0
1465
FIG.14B
S2 S5
S10
S6
S3
S1 S7 S13
S11
S8
S4
S9 S12
» 255
X f
1465

FIG.14C

U.S. Patent Feb. 23,2016 Sheet 17 of 19 US 9,268,855 B2

/ 1500
(START ”L1505

) f1510

Identify subsets of rulesin a current leaf
node that include intersecting regions

/‘1517

Prioritize the subset of rules based on a
calculated number of intersecting rules

| 151 v /’1520

Assign a cookie value to each subset if
For each subset,add a new needed
rule to the current leaf node
representing the intersecting /— 1525
region for that particular subset

Output a next-phase rules set

END 1530

FIG. 15

U.S. Patent Feb. 23,2016 Sheet 18 of 19 US 9,268,855 B2

/ 1600
START 1605

For each rule in each segment, generate and output

a rule for the subsequent search phases 1610

END 1615

FIG. 16A

U.S. Patent Feb. 23,2016 Sheet 19 of 19 US 9,268,855 B2

/ 1601
START 1620

For a subject original rule in the current leaf node,
generate a rule for the subsequent search phases 1625

For each rule in a subject subset of the identified

subsets, generate a rule for the subsequent search 22— 1630
phases
END 1635

FIG.16B

US 9,268,855 B2

1

PROCESSING REQUEST KEYS BASED ON A
KEY SIZE SUPPORTED BY UNDERLYING
PROCESSING ELEMENTS

BACKGROUND

The Open Systems Interconnection (OSI) Reference
Model defines seven network protocol layers (I.1-1.7) used to
communicate over a transmission medium. The upper layers
(L4-L7) represent end-to-end communications and the lower
layers (I.1-L3) represent local communications.

Networking application aware systems need to process,
filter and switch a range of .3 to L7 network protocol layers,
for example, 1.7 network protocol layers such as, HyperText
Transfer Protocol (HTTP) and Simple Mail Transfer Protocol
(SMTP), and L4 network protocol layers such as Transmis-
sion Control Protocol (TCP). In addition to processing the
network protocol layers, the networking application aware
systems need to simultaneously secure these protocols with
access and content based security through 1.4-L.7 network
protocol layers including Firewall, Virtual Private Network
(VPN), Secure Sockets Layer (SSL), Intrusion Detection
System (IDS), Internet Protocol Security (IPSec), Anti-Virus
(AV) and Anti-Spam functionality at wire-speed.

Improving the efficiency and security of network operation
intoday’s Internet world remains an ultimate goal for Internet
users. Access control, traffic engineering, intrusion detection,
and many other network services require the discrimination
of packets based on multiple fields of packet headers, which
is called packet classification.

Internet routers classify packets to implement a number of
advanced internet services such as routing, rate limiting,
access control in firewalls, virtual bandwidth allocation,
policy-based routing, service differentiation, load balancing,
traffic shaping, and traffic billing. These services require the
router to classify incoming packets into different flows and
then to perform appropriate actions depending on this classi-
fication.

A classifier, using a set of filters or rules, specifies the
flows, or classes. For example, each rule in a firewall might
specify a set of source and destination addresses and associate
a corresponding deny or permit action with it. Alternatively,
the rules might be based on several fields of a packet header
includinglayers 2, 3,4, and 5 of the OSI model, which contain
addressing and protocol information.

On some types of proprietary hardware, an Access Control
List (ACL) refers to rules that are applied to port numbers or
network daemon names that are available on a host or layer 3
device, each with a list of hosts and/or networks permitted to
use a service. Both individual servers as well as routers can
have network ACLs. ACLs can be configured to control both
inbound and outbound traffic.

SUMMARY

Embodiments of the present disclosure include methods,
systems, apparatus, or computer readable medium, with pro-
gram codes embodied thereon, for processing data packets.
One embodiment is a method that includes receiving a packet.
The method also includes creating a request key using infor-
mation extracted from the packet. In addition, the method
includes splitting the request key into an n number of partial
request keys if at least one predetermined criterion is met,
wherein n>1 and each of the n number of partial request keys
is associated with a distinct set of information extracted from
the packet. The method also includes sending a non-final
request that includes an i-th partial request key to a corre-

10

15

20

25

30

35

40

45

50

55

60

65

2

sponding search table of an n number of search tables,
wherein i<n. Further, the method includes receiving a non-
final search result from the corresponding search table. The
method include sending a final request that includes an n-th
partial request key and the non-final search result received in
response to sending the non-final request to the correspond-
ing search table. Also, the method includes receiving a final
search result from the corresponding search table and pro-
cessing the packet based on processing data included in the
final search result.

The packet can include at least one header and the infor-
mation is extracted from at least one data field of the at least
one header. The distinct set of information can be extracted
from data stored in a set of data fields corresponding to a
subset of the at least one data field of the at least one header
contained in the packet.

The at least one predetermined criterion can be at least one
of: a processing capability of a processing system for pro-
cessing the request key and a size of the request key. The size
of'the request key can be based on a size and number of data
fields from which the information is extracted. The corre-
sponding search table can be a search table including rules
that are modified to be searchable on the set of data fields from
which the distinct set of information is extracted from the
packet. If 1<i<n, the non-final request includes the i-th partial
request key and the non-final search result received in
response to sending an (i-1)th non-final request. The non-
final search result can include a cookie identifying a set of
rules in the corresponding search table that matches the i-th
partial request key and a next set of the distinct set of infor-
mation to be matched in a next non-final request. The final
search result can identify a rule that includes instructions used
to process the packet.

Another embodiment is an apparatus that includes a
memory and one or more processors coupled to the memory.
The one or more processors are configured to receive a packet
and create a request key using information extracted from the
packet. The one or more processors are also configured to
split the request key into an n number of partial request keys
if at least one predetermined criterion is met, wherein n>1 and
each of the n number of partial request keys is associated with
a distinct set of information extracted from the packet. In
addition, the one or more processors are configured to send a
non-final request that includes an i-th partial request key to a
corresponding search table of an n number of search tables,
wherein i<n. Further, the one or more processors are config-
ured to receive a non-final search result from the correspond-
ing search table. Also, the one or more processors are config-
ured to send a final request that includes an n-th partial request
key and the non-final search result received in response to
sending a non-final request including an (n-1)th partial
request key to the corresponding search table. The one or
more processors are also configured to receive a final search
result from the corresponding search table and process the
packet based on processing data included in the final search
result.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more
particular description of example embodiments of the disclo-
sure, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout
the different views. The drawings are not necessarily to scale,
emphasis instead being placed upon illustrating embodi-
ments of the present disclosure. The accompanying drawings,
which are incorporated in and constitute a part of this speci-

US 9,268,855 B2

3

fication, illustrate several embodiments consistent with the
disclosure and together with the description, serve to explain
the principles of the disclosure.

FIG. 1 is a block diagram illustrating a system in which a
packet classifier operates to classify packets to provide inter-
net services to a private network, in accordance with an
example embodiment of the present disclosure.

FIG. 2 is a block diagram of a router that may classify
packets according to techniques disclosed herein.

FIG. 3 illustrates a classifier table including rules for clas-
sifying a packet, in accordance with an example embodiment
of the present disclosure.

FIG. 4 illustrates a geometric representation of the rules of
the classifier table illustrated in FIG. 3, in accordance with an
example embodiment of the present disclosure.

FIG. 5 illustrates a decision tree data structure compiled
from the classifier table illustrated in FIG. 3, in accordance
with an example embodiment of the present disclosure.

FIG. 6 illustrates an example key generated from a packet
received by a router, in accordance with an example embodi-
ment of the present disclosure.

FIG. 7 is a functional block diagram of a data plane of a
router used to process incoming packets, in accordance with
an example embodiment of the present disclosure.

FIG. 8 is a flow diagram of a method for processing pack-
ets, in accordance with an example embodiment of the
present disclosure.

FIG. 9 illustrates a set of partial keys created from an
original key generated from a packet received by a router, in
accordance with an example embodiment of the present dis-
closure.

FIG. 10A is an illustration of a tree, a leaf node pointing to
a bucket containing a set of rules of a classifier rule table.

FIG. 10B is a block diagram illustrating an example
embodiment of compiling a set of rules into a decision tree
data structure.

FIG. 10C illustrates a decision tree data structure including
a tree, buckets, and rules.

FIG. 11 illustrates a method for compiling search trees for
processing partial search keys generated from an original
search key, in accordance with an example embodiment of the
present disclosure

FIG. 12 illustrates a classifier table received by a compiler,
in accordance with an example embodiment of the present
disclosure.

FIG. 13 illustrates a method for compiling a search tree
corresponding to the current phase, in accordance with an
example embodiment of the present disclosure.

FIG. 14A illustrates a method for processing intersections
of rules in a leaf node of a search tree, in accordance with an
example embodiment of the present disclosure.

FIG. 14B illustrates a geometric representation of the rules
in a leaf node of a search tree, in accordance with an example
embodiment of the present disclosure.

FIG. 14C illustrates a segmentation of the geometric rep-
resentations of the rules in the current leaf node, in accor-
dance with an example embodiment of the present disclosure.

FIG. 15 illustrates another method for processing intersec-
tions of rules in aleafnode of a search tree, in accordance with
an example embodiment of the present disclosure.

FIG. 16A illustrates an example method for outputting
next-phase rules to be processed by a compiler for compiling
a next-phase search tree.

FIG. 16B illustrates another example method for output-
ting next-phase rules to be processed by a compiler for com-
piling a next-phase search tree.

10

15

20

25

30

35

40

45

50

55

60

65

4
DETAILED DESCRIPTION

A description of example embodiments of the invention
follows.

The teachings of all patents, published applications and
references cited herein are incorporated by reference in their
entity.

Although packet classification has been widely studied for
a long time, researchers are still motivated to seek novel and
efficient packet classification solutions due to: i) the continual
growth of network bandwidth, ii) increasing complexity of
network applications, and ii) technology innovations of net-
work systems.

Explosion in demand for network bandwidth is generally
due to the growth in data traffic. Leading service providers
report bandwidths doubling on their backbone networks
about every six to nine months. As a consequence, novel
packet classification solutions are required to handle the
exponentially increasing traffics on both edge and core
devices.

Complexities of network applications are increasing due to
the increasing number of network applications being imple-
mented in network devices. Packet classification is widely-
used for various kinds of applications, such as service-aware
routing, intrusion prevention and traffic shaping. Therefore,
novel solutions of packet classification must be more intelli-
gent to handle diverse types of rule sets without significant
loss of performance.

In addition, new technologies, such as multi-core proces-
sors provide unprecedented computing power, as well as
highly integrated resources. Thus, novel packet classification
solutions must be well suited to advanced hardware and soft-
ware technologies.

Before describing example embodiments in detail, an
example packet classification system and related methods are
described immediately below to help the reader understand
the inventive features described herein.

Existing packet classification methods trade memory for
time. Although the tradeoffs have been constantly improving,
the time taken for a reasonable amount of memory is still
generally poor. Because of problems with existing methods,
vendors use ternary content-addressable memory (TCAM),
which uses brute-force parallel hardware to simultaneously
check packets against all rules. The main advantages of
TCAMs over existing methods are speed and determinism
(TCAMs work for all databases).

A TCAM is a hardware device that functions as a fully
associative memory. A TCAM cell stores three values: 0, 1, or
‘X, which represents a don’t-care bit and operates as a per-
cell mask enabling the TCAM to match rules containing
wildcards (e.g., don’t care bits). In operation, a whole packet
header can be presented to a TCAM to determine which entry
(rule) it matches. However, the complexity of TCAMs has
permitted only small, inflexible, and relatively slow imple-
mentations that consume a lot of power. Therefore, a need
continues for efficient methods operating on specialized data
structures.

FIG. 1 is a block diagram illustrating a system 101 that
includes a router/packet classifier 100, protected network
115, and a public network 105 in accordance with an example
embodiment of the present disclosure. The public network
105 may comprise an unsecured wide-area network (WAN),
such as the Internet, a wireless network, a local-area network,
or another type of network. Protected network 115 may com-
prise a secured computer network such as a local-area net-
work (LAN) in an office or a data center. As illustrated, the
LAN may be a corporate network 120 including a plurality of

US 9,268,855 B2

5

work stations 125. The plurality of work stations 125 are
operatively coupled to database 130, FTP (file transfer pro-
tocol) server 135, and intranet server 150.

In system 101, the router 100 is connected to the public
network 105 and protected network 115 such that network
traffic flowing from public network 105 to protected network
115 flows first to the router 100. The router 100 may be a
stand-alone network appliance, a component of another net-
work appliance (e.g., firewall appliance), a processor that
executes software instructions on a network appliance, or
another configuration. The router 100 may be connected to a
rules datacenter 140. In general, router 100 inspects network
traffic from public network 105 and determines what actions
to perform on the network traffic. For example, router 100
classifies packets to implement a number of advanced internet
services such as routing, rate limiting, access control in fire-
walls, virtual bandwidth allocation, policy-based routing, ser-
vice differentiation, load balancing, traffic shaping, and traf-
fic billing. These services require the router 100 to classify
incoming packets into different flows and then to perform
appropriate actions depending on this classification.

FIG. 2 is ahigh-level block diagram of an exemplary router
200 that may be used with embodiments described herein.
Router 200 comprises a memory 210 coupled to a processor
225 via a memory bus 245 and, a storage device 230 and a
network interface 240 coupled to the processor 225 via an
input/output (I/O) bus 250. It should be noted that the router
200 may include other devices, such as keyboards, display
units and the like. The network interface 240 interfaces the
router 200 with the secured network 115, public network 105,
and rules datacenter 140 and enables data (e.g., packets) to be
transferred between the router and other nodes in the system
101. To that end, network interface 240 comprises conven-
tional circuitry that incorporates signal, electrical and
mechanical characteristics, and interchange circuits, needed
to interface with the physical media of system 101 and pro-
tocols running over that media.

The memory 210 is a non-transitory computer-readable
medium implemented as a RAM comprising RAM devices,
such as DRAM devices and/or flash memory devices.
Memory 210 contains various software and data structures
used by the processor 225 including software and data struc-
tures that implement aspects of the embodiments described
herein. Specifically, memory 210 includes an operating sys-
tem 215 and packet classification services 220. The operating
system 215 functionally organizes the router 200 by invoking
operations in support of software processes and services
executing on router 200, such as packet classification services
220. Packet classification services 220, as will be described
below, comprises computer-executable instructions to com-
pile a decision tree data structure from a given set of rules and
walk incoming data packets through the compiled decision
tree data structure.

Storage device 230 is a conventional storage device (e.g.,
disk) that comprises rules database (DB) 235 which is a data
structure that is configured to hold various information used
to compile a decision tree data structure from a given set of
rules. Information may include rules having a plurality of
fields corresponding to headers of incoming data packets.

In an example embodiment, the router 200 can perform
packet classification using a packet classifier, also called a
policy database, flow classifier, or simply a classifier. The
packet classifier can be included as part of the router’s packet
classification services 220. A classifier is a collection of rules
or policies. Packets received are matched with rules, which
determine actions to take with a matched packet. Generic
packet classification requires a router to classify a packet on

20

25

40

45

50

6

the basis of multiple fields in a header of the packet. Each rule
of' the classifier specifies a class that a packet may belong to,
according to criteria on ‘F’ fields of the packet header, and
associates an identifier (e.g., class ID) with each class. For
example, each rule in a flow classifier is a flow specification,
in which each flow is in a separate class. The identifier
uniquely specifies an action associated with each rule. Each
rule has ‘F’ fields. An ith field of a rule R, referred to as R[i],
is a regular expression on the ith field of the packet header. A
packet P matches a particular rule R if for every i, the ith field
of the header of P satisfies the regular expression R[i].

Classes specified by the rules may overlap. For instance,
one packet may match several rules. In this case, when several
rules overlap, an order in which the rules appear in the clas-
sifier may determine the rule’s relative priority. In other
words, a packet that matched multiple rules belongs to the
class identified by the identifier (class ID) of the rule among
them that appears first in the classifier. Alternatively, a unique
priority associated with a rule may determine its priority, for
example, the rule with the highest priority.

Packet classifiers may analyze and categorize rules in a
classifier table and create a decision tree that is used to match
received packets with rules from the classifier table. A deci-
sion tree is a decision support tool that uses a tree-like graph
or model of decisions and their possible consequences,
including chance event outcomes, resource costs, and utility.
Decision trees are commonly used in operations research,
specifically in decision analysis, to help identify a strategy
most likely to reach a goal. Another use of decision trees is as
a descriptive means for calculating conditional probabilities.
Embodiments described herein utilize decision trees to selec-
tively match a received packet with a rule in a classifier table
to determine how to process the received packet.

A decision tree of rules, or tree, represents a set of rules.
The decision tree may also be called a Rule Compiled Data
Structure (RCDS) or a performance tree. The tree is a binary
data structure having nodes and leaves. Each leaf of the tree
points to a subset of the rules, called a bucket of rules, or
bucket. Each of the buckets represents a subset of the rules.
Each bucket is a data structure (e.g., an array) containing
pointers to rules, which are stored in a rule table. Rules (or
pointers to rules) within a bucket are ordered by priority (e.g.,
in increasing or decreasing priority). A rule table is a data
structure (e.g., an array) containing the rules. Rules within the
rule table may be ordered or unordered.

FIG. 3 illustrates a classifier table 300 including rules for
classifying a packet. As illustrated, the classifier table con-
tains seven rules (R1-R7), each containing two fields, Field-1
(310), and Field-2 (315). Although the table illustrates rules
being 2-tuple (e.g., containing only two fields), it should be
noted that rules may contain an n number of fields and be
n-tuple. Each rule specifies a range of values (e.g., Internet
Protocol (IP) addresses or Layer 4 ports or protocols) in each
dimension (field). For example, Field-1 (310) may be repre-
sented in the x-dimension of an x/y graph, while Field-2 (315)
may be represented in the y-dimension of an x/y graph.

FIG. 4 illustrates a geometric representation of the rules of
the classifier table 300. The rules range from values 0-255 in
both the x-dimension 405 and y-dimension 410. As illus-
trated, each dimension of the graph is subdivided based onthe
ranges of each field of each rule from classifier table 300.

FIG. 5 illustrates a decision tree data structure 500 com-
piled from the classifier table 300. The decision tree 500
contains a set of elements called nodes (501, 505, 510, 515,
520, 525, 530) that are empty or satisfy one of the following
conditions: i) there is a distinguished node r, called the root
node, and ii) the remaining nodes are divided into disjoint

US 9,268,855 B2

7

subsets, each of which is a sub-tree. As illustrated, node 501
is the root node of the decision tree and a parent node of nodes
505, 510, 525, and 530, which are considered child nodes of
root node 501. The degree of a node is the number of non-
empty sub-trees the node contains. A node with degree zero is
considered a leaf node. Thus, nodes 505, 515, 520, 525, and
530 are considered leaf nodes. Nodes with a positive degree
are internal nodes (e.g., node 510).

Each node of the decision tree 500 contains a subset of
rules of a classifier table. As stated above, each rule has ‘F’
fields and an ith field of a rule R, referred to as R[], is aregular
expression on the ith field of a received packet header. A
packet P matches a particular rule R if for every i, the ith field
of the header of P satisfies the regular expression R[i]. Thus,
when a packet is received, a decision tree is walked (e.g., by
aruntime walker) to determine a matching rule, which is used
to determine an action to take with the received packet.

For example, if a packet is received that contains headers
matching rule R7 (see FIG. 3), decision tree 500 is walked
(e.g., traversed) to find matching rule R7. Thus, the packet is
first passed through root node 501, which contains all rules of
the packet classification table, which has been cut into four
children. Cutting a node refers to subdividing the node into n
number of child nodes. The n number of child nodes created
corresponds to the number of cuts (subdivisions) of the node
that are made. In this example, the rules in root node 501 have
been subdivided into four distinct ranges (corresponding to
each child node 505, 510, 525, and 530). Thus, it is deter-
mined that the packet should be passed to child node 530 that
contains a subset of rules having fields within a range of each
header of the received packet. After the packet is passed to
node 530, the packet is matched with rule R7.

Example embodiments described herein build a decision
tree data structure by carefully preprocessing a classifier.
Each time a packet arrives, the run time walker traverses the
decision tree to find a leaf node that stores a small number of
rules. Once the leaf node is reached, a linear search of the
rules within the leaf node occurs to find a matching rule.

As stated herein, a router (e.g., router 100 of FIG. 1)
inspects network traffic from, for example, a network and
determines what actions to perform on the network traffic. For
example, the router classifies packets to implement a number
of advanced internet services such as routing, rate limiting,
access control in firewalls, virtual bandwidth allocation,
policy-based routing, service differentiation, load balancing,
traffic shaping, and traffic billing. These services require the
router to classify incoming packets into different flows and
then to perform appropriate actions depending on this classi-
fication.

In order to process and classify packets, the router matches
the packets with rules, which determine actions to take with a
matched packet. For instance, packet classification requires
the router to classify a packet on the basis of multiple fields in
a header of the packet. In an embodiment, the router receives
the packet and creates a key based on the multiple fields in the
header of the packet. FIG. 6 illustrates an example key 600
generated from a packet (not shown) received by the router. In
particular, the router extracts information from the multiple
fields in the header of the packet to form the key 600. The key
600 is 104 bits in size. The key 600 includes five fields 605a-d
corresponding to the multiple fields in the header of the
packet. In this example embodiment, the key includes: 1) field
605a associated with a TCP source address having a size 0f 16
bits, 1i) field 6055 associated with a TCP destination address
having a size of 16 bits, iii) field 605¢ associated with a
Protocol identifier having a size of 8 bits, iv) field 6054

40

45

50

8

associated with an IP source address having a size of 32 bits,
and v) field 605¢ associated with an IP destination address
having a size of 32 bits.

The router passes the key 600 to a search processor of the
router to match the packet with a flow processing rule. For
instance, each rule has ‘F’ fields. An ith field of a rule R,
referred to as R[1], is a regular expression on the ith field of the
packet header. A packet P matches a particular rule R if for
every 1, the ith field of the header of P satisfies the regular
expression R[i]. Thus, the search processor returns a rule R
that matches the packet header information contained in the
key 600.

FIG. 7 is a functional block diagram of a data plane 705 of
a router 700 used to process incoming packets 720, in accor-
dance with an example embodiment of the present disclosure.
As stated above, the router 700 classifies the packets 720 to
implement a number of advanced internet services such as
routing, rate limiting, access control in firewalls, virtual band-
width allocation, policy-based routing, service differentia-
tion, load balancing, traffic shaping, and traffic billing.

In particular, the router 700 receives the incoming packets
720 from a network (e.g., public network 105 of FIG. 1), via
a packet processing unit 710 in a data plane 705 of the router
700. The packet processing unit 710 processes each of the
packets 720. In order to process each of the packets 720, the
packet processing unit 710 creates at least one processing key
(e.g., key 600 of FIG. 6) for each of the packets 720. In
particular, the packet processing unit 710 extracts informa-
tion held in at least one field of at least one header of each the
incoming packets 720. The extracted information is then used
to create the at least one processing key for each of the packets
720.

The packet processing unit 710 passes the at least one key,
via a request 730, for information used to process the incom-
ing packets 720 (e.g., a rule R). For example, the processing
unit 710 requires information on how to classify the packet to
implement at least one of the aforementioned internet ser-
vices.

The search processor 715 receives the key request 730,
including the at least one key, from the packet processing unit
710. In response to receiving the key request 730, the search
processor matches the at least one key with a rule R of a set of
processing rules 725 received from a rules compiler (not
shown). In particular, the search processor 715 selects a
search tree or set of search trees, received from the compiler,
to traverse the set of processing rules 725. The packet search
processor 715 can select a search tree based on information
contained in the key request 730 (e.g., fields in the key of the
key request 730, size of the key, and number of keys). Once
the search tree is selected, the search processor 715 walks the
key through the search tree. The search processor 715 reaches
a leaf node of the search tree and performs a linear search of
all the rules in the leaf node. The search processor then iden-
tifies a rule that matches the key. In particular, the matching
rule is a rule that includes fields and corresponding field
values matching information in the key. The search processor
715 provides the packet processing unit 710 a key request
response 735 that includes information associated with the
rule. The packet processing unit 710 receives the key request
response 735 and processes the incoming packets 720 accord-
ing to processing information contained in the rule.

In some situations, a key generated for at least one of the
incoming packets 720 can be too large for either the packet
processing unit 710 or the search processor 715 to process. In
order to process such a key, the packet processing unit 710 is
configured to modify the key such that the router 700 can
process the packet associated with the key. For example, the

US 9,268,855 B2

9

packet processing unit 710 splits the generated key into a
plurality of smaller partial keys as discussed in greater detail
below. Each of the plurality of smaller partial keys is passed
to the search processor 715. The search processor 715 is
configured to return a result for each of the plurality of smaller
partial keys as also discussed in greater detail below.

FIG. 8 is a flow diagram of an example method 800 per-
formed, for example, by a packet processing unit (e.g., the
packet processing unit 710) of a router for processing packets.
At 805, the method begins. The method 800, at 810, includes
receiving a packet. The packet can be received from, for
example, a public network (e.g., the public network 105 of
FIG. 1). At 815, the method 800 includes creating a request
key using information extracted from the packet. In an
example, method 800 can include extracting information held
in at least one field of at least one header of each the received
packet. The extracted information is then used to create the at
least one processing key (e.g., the key 900 of FIG. 9) corre-
sponding to the packet.

If a predetermined criterion is met, the method, at 820,
includes splitting the request key into an n number of partial
request keys, where n>1 and each of the n number of partial
request keys is associated with a distinct set of information
extracted from the packet. The predetermined criterion can be
at least one of: a processing capability of an element of a
processing system (e.g., any element of router 700 of FIG. 7)
for processing the packet and a size of the request key. The
size of the request key can be based on a size and number of
data fields from which the information is extracted.

FIG. 9 illustrates a set of partial keys 905a-b created from
the key 900. The key 900 is created from a packet (e.g., a
packet ofthe incoming packets 720 of FIG. 7). In this example
embodiment, the key includes 3 fields: FIELD-X, FIELD-Y,
and FIELD-Z. The size of the key is too large for, for example,
a packet processing unit (e.g., the packet processing unit 710
of FIG. 7) to process. In response, the packet processing unit
splits the key 900 into smaller keys 905a-4.

Referring back to FIG. 8, the method 800, at 825, further
includes sending a non-final request that includes an i-th
partial request key to a corresponding search table of an n
number of search tables, where i<n. In an example embodi-
ment, if 1<i<n, the non-final request includes the i-th partial
request key and the non-final search result received in
response to sending any one of or a combination of any
previous non-final request. In another embodiment, if 1<i<n,
the non-final request may only include the i-th partial request
key.

For example, the non-final request can be sent to a search
processor (e.g., the search processor 715 of FIG. 7). The
search processor includes data structures storing a set of rules
used to process the received packet. The data structures can be
organized in the form of a search table. However, it should be
noted that the data structures can be organized in any other
form, for example, a search tree.

In response to sending the non-final request, the method
800, at 830, includes receiving a non-final search result from
the corresponding search table. The non-final search result
can include a cookie. At 835, the method 800 includes send-
ing a final request that includes an n-th partial request key and
the non-final search result received in response to sending the
non-final request to the corresponding search table. The
method 800, at 840, also includes receiving a final search
result from the corresponding search table in response to
sending the final search request. The final search result
includes information that identifies a rule having instructions
used by, for example, the packet processing unit, to process
the packet. At 845, the method 800 includes processing the

25

30

35

40

45

55

10
packet based on processing data included in the final search
result. At 850, the method 800 ends.

As stated above, a generated key (e.g., key 900 of FIG. 9)
includes several fields corresponding to information
extracted from multiple fields in at least one header of a
received packet. In some embodiments, the generated key
may be of a size that is too large for a processing element of
a router (e.g., the router 700 of FIG. 7) to process. In such
situations, a packet processing unit (e.g., the packet process-
ing unit 710) of the router is configured to process the gener-
ated key according the method 800 as described above. In
addition, a search processor (e.g., the search processor 715 of
FIG. 7) is also configured to process multiple partial request
keys. In particular, the search processor is configured to,
using each of the n partial request keys, perform a search on
a rule set and return a result. In an example embodiment, the
search processor 715 is able to perform said searches by using
data structures configured to enable the search processor to
perform a search on a set of rules using the partial request
keys. The data structures (e.g., search trees) are generated by
a compiler as described in greater detail below.

Embodiments described herein include at least three data
structures thatinclude: 1) atree, ii) buckets, and ii) a rule table.
A tree includes nodes and leaf nodes. Leaf nodes may be
linked to buckets. The leaf nodes may point to buckets, buck-
ets may contain a set of rules. Embodiments described herein
may store rules in common tables and the buckets pointed to
by leaf nodes may contain rule numbers corresponding to the
rules in the rules table. Buckets may include rules in any
suitable manner as may be known to one skilled in the art.
Each bucket may be a data structure that may include one or
more bucket entries. A bucket entry may be a rule, an index to
arule, a pointer to a rule, a pointer to a set of rules, or a pointer
to another bucket. A bucket may include a linked list to the
rules. A bucket may include entries including any combina-
tion thereof. For example, a bucket may have one entry that is
a pointer to a rule and one entry that is a pointer to a set of
rules, etc. Rule priority may be stored with a rule or linked to
a rule in any suitable manner.

FIG. 10A is an illustration of an example embodiment of a
tree 1050, a leaf node 1052 pointing to (1060) a bucket 1054
containing a set of rules 1056 of a classifier rule table 1058.

FIG. 10B is a block diagram 1070 illustrating an example
embodiment of compiling a set of rules into a decision tree
data structure. A compiler 1072 may receive a rule set 1074,
a maximum tree depth 1076 and a number of sub trees 1078
in, for example, a control plane of a router (e.g., router 700 of
FIG. 7). The compiler 1072 may generate a set of compiled
rules 1080.

FIG. 10C illustrates a decision tree data structure 1081
including a tree, buckets, and rules. The set of compiled rules
1080 may generate a decision tree data structure 1081 includ-
ing a tree 1082, buckets 1083a-d, and rules 1085. The tree
1082 may include a root node 1084, nodes 1084a-c, and leaf
nodes 1086a-b. Each leafnode 1086 of the tree 1082 points to
a bucket 1083. Each bucket may include one or more bucket
entries 1087. A leat node may include bucket information that
may be used to locate the bucket entries or a bucket list of
entries. A bucket entry may be a pointer to rule (1088), or a
pointer (1089) to a set of rules (1090). The set of rules 1090
may be a sequential group of rules, or a group of rules scat-
tered throughout the memory, either organized by a plurality
of pointers or by a method used to recollect the set of rules.
The set of rules 1090 may also be called a chunk, or a chunk
ofrules. A bucket entry that points to the set of rules 1090 may
be called a chunk pointer.

US 9,268,855 B2

11

FIG. 11 illustrates a method 1100 executed, for example,
by acompiler (e.g., compiler 1072 of FIG. 10B) for compiling
search trees for processing partial search keys in accordance
with an example embodiment of the present disclosure. In
order to compile the search trees, the compiler receives a rule
set from which to compile the search trees. Each rule in the
rule set includes a plurality of fields.

FIG. 12 illustrates an example rules table 1200 that
includes rules to be compiled by the compiler. As illustrated,
the rules table 1200 contains three rules (R1-R3), each con-
taining three fields, Field-1 (1210), Field-2 (1215), and
Field-3 (1220). Although the table illustrates rules being
3-tuple (e.g., containing only three fields), it should be noted
that rules may contain an n number of fields and be n-tuple.
Each rule specifies a range of values (e.g., Internet Protocol
(IP) addresses or Layer 4 ports or protocols) in each dimen-
sion (field). For example, Field-1 (1210) may be represented
in the x-dimension of an x/y graph, while Field-2 (1215) may
be represented in the y-dimension of an x/y graph. In addition,
Field-3 (1220) may be a value represented as planes overlay-
ing the x/y graph in the third z-dimension.

In addition, the compiler receives information correspond-
ing to a maximum processing capability of a router (e.g.,
router 700) used to process packets. The compiler uses the
information in order to determine a number of processing
phases required to process a packet received that corresponds
to a rules set stored by the router. As stated above, packets
received are matched with rules, which determine actions to
take with a matched packet. In particular, packet classifica-
tion requires a router to classify a packet on the basis of
multiple fields in a header of the packet. Each rule of the
classifier specifies a class that a packet may belong to, accord-
ing to criteria on ‘F’ fields of the packet header, and associates
an identifier (e.g., class ID) with each class. The identifier
uniquely specifies an action associated with each rule. Each
rule has ‘F’ fields. An ith field of a rule R, referred to as R[],
is a regular expression on the ith field of the packet header. A
packet P matches a particular rule R if for every i, the ith field
of the header of P satisfies the regular expression R[i].

Further, once a packet is received by the router, a key is
generated from multiple fields in at least one header of the
packet. The size of the key is based on the number of fields
from which information is extracted from the headers of the
packet. The router may only be able to process a key up to a
specific size (e.g., 320 bits). Thus, if a key is generated that is
of a size greater than the processing capability of the router,
the router splits the key into multiple partial keys as per
embodiments of the present disclosure described herein.

Thus, in response to the compiler receiving a rules set (e.g.,
rules table 1200) and the information corresponding to the
processing capability of the router, the compiler is able to
determine a number of processing phases required to process
a packet. In other words, the compiler creates a separate
processing to process a respective partial key of the multiple
partial keys.

Referring back to FIG. 11, the method 1100, at 1105,
begins by receiving a rules set (e.g., the rules table 1200 of
FIG. 12) and information corresponding to a processing capa-
bility of a router (e.g., a maximum key size supported by any
processor of the router). At 1110, the method 1100 includes
determining fields from the rules table from which to compile
a search tree or set of search trees for a current processing
phase. In particular, the compiler selects fields from the rules
table that have not been used to process a previous processing
phase. In addition, the compiler selects any subset of the fields
such that a partial key corresponding to the subset of the fields
does not exceed a size greater than the processing capability

10

15

20

25

30

35

40

45

50

55

60

65

12

of the router. If the current phase is not a first phase, the
method 1100 includes selecting a field corresponding to
cookie values associated with the rules. The cookie values are
generated from compiling a set of search trees for the search
phase preceding the current processing phase.

The method 1100, at 1115, includes determining whether
the current processing phase is the last phase. For instance,
the method determines if all the fields from the rules table
have been selected. If all the fields have not been selected, the
current phase is not the last phase and the method 1100
proceeds to step 1120. If all the fields have been selected, the
current phase is the last phase and the method 1100 proceeds
to step 1130. At 1130, the compiler compiles a search tree
corresponding to the last processing phase according to the
method 1300 of FIG. 13. Then, at 1135, the method 1110
ends.

At 1120, the method 1100 includes compiling a search tree
or set of search trees corresponding to the current phase and
producing a rules set for subsequent processing phases as
described in the method 1300 of FIG. 13. The method 1100,
at 1125, includes providing the rules set for the next process-
ing phase as input to the compiler for compiling a next pro-
cessing phase(s). The method 1100 then continues at step
1110.

FIG. 13 illustrates a method 1300 for compiling a search
tree or set of search trees corresponding to the current phase.
The method can be executed by a compiler (e.g., the compiler
1072 of FIG. 10B). It should be noted that the method 1300
for compiling the search tree can utilize any known compiling
method (e.g., a breadth first and a depth first). At 1305, the
method 1300 begins. The method 1300, at 1315, queues a root
node in a node processing queue. The node processing queue
includes a list of nodes to be compiled for the search tree. At
1320, the method 1300 determines if the node processing
queue is empty. If the queue is empty, the method 1300 ends
at 1370. If the method 1300 determines that the node process-
ing queue is not empty, processing continues at 1325. At
1325, the method includes selecting a node from the queue
and removing the node from the queue for processing.

The method 1300, at 1330, includes removing covered
rules from the node. In particular, the method 1300 removes
lower priority rules that are covered by a higher priority rule.
A lower priority rule is covered by a higher priority rule if the
higher priority rule completely overlaps the lower priority
rule in each tuple (e.g., dimension or field) of the lower
priority rule. For example, referring to FIG. 4, if arule R8 is
introduced having an X-RANGE of 130-185 and aY-RANGE
of 20-50, then rule R8 would be overlapped by rule R6.
Further, if rule R6 has a higher priority than rule R8, rule R8
is removed from the current node. In an example embodi-
ment, arule is removed if it is covered by a higher priority rule
in all fields of the rule. In another embodiment, a rule is
removed if it is covered by a higher priority rule in all fields
that have yet to be processed by the method 1100 of FIG. 11
including the fields associated with the current phase.

At 1335, the method 1300 determines if a number of rules
in the current node is less than a predetermined threshold. The
predetermined threshold can be, for example, any number
selected by a user or dynamically selected by a processor. In
an example, the threshold can be selected based on an optimal
speed associated with traversing the search tree. The optimal
speed can be determined, for example, through experimenta-
tion or statistical modeling.

If'the number of rules in the current node is not less than the
predetermined threshold, the method 1300 continues at 1340.
At 1340, the method 1300 includes outputting the node in a
data structure identifying the node in the search tree. At 1345,

US 9,268,855 B2

13

the method 1300 continues to process the current node as a
non-leaf node and creates and queues child nodes in the
processing queue for further processing. The method 1300
then continues at 1320.

If the number of rules in the current node is less than the
predetermined threshold, the method 1300 continues at 1350
and processes the current node as a leaf node. The method
1300, at 1350, determines if intersections of rules have
already been processed for rules in the current node by a
previous parent node. A parent node can be any node in a
family of nodes preceding the current node (e.g., a grandpar-
ent node). If the method 1300 determines that the intersec-
tions have already been processed, the method continues at
1365. At 1365, the method 1300 includes outputting the node
as a leaf node in a data structure identifying the node as a leaf
node of the search tree. The method 1300 then continues at
1320.

If the method 1300 determines that the intersections have
not been processed, the method 1300, at 1355, processes the
intersections. The intersections are processed, for example,
according to either of the methods described FIG. 14A or
FIG. 15. At 1360, the method 1300 determines if a number of
rules in the current node is still less than the predetermined
threshold due to any new rules created from step 1355. If the
method 1300 determines the number of rules is still less than
the predetermined threshold the method continues at 1365. If
not, the method continues at 1345 and processes the current
node as a non-leaf node.

FIG. 14A illustrates a method 1400 for processing inter-
sections of rules in a leaf node of a search tree, in accordance
with an example embodiment of the present disclosure. At
1405, the method 1400 begins. In order to further elaborate
the concept of FIG. 14A, FIG. 14B, using an example rules
set, illustrates a geometric representation of the example rules
set in the current leaf node. The rules range from values 0-255
in both the x-dimension 1465 and y-dimension 1470. As
illustrated rule R1 and rule R2 include an intersecting region
1480. Thus, traversing the tree associated with the processing
phase associated with the x-dimension and the y-dimension
of an n-tuple rule set can yield a match in the intersecting
region 1480. However, at this phase of processing, it cannot
be known which rule is a match. Thus, embodiments of the
present disclosure: 1) identify logical segments in a range of
values of the dimensions associated with the current leaf
node; ii) assign cookie values to each of the logical segments;
and iii) define a new rule for each of the logical segments. For
example, referring back to FIG. 14A, the method 1400, at
1410 identifies the segments. FIG. 14C illustrates a segmen-
tation of the geometric representations of the rules in the
current leaf node. Each segment is a region of the rules in the
current leaf node that intersects a same subset of the rules in
the current leaf node. For example, segment S7 represents the
intersecting region 1480 where rule R1 and rule R2 intersect.
In particular, intersecting region 1480 is the intersection of
the values of the fields used in the current phase being pro-
cessed in the method 1100 of FIG. 11 (e.g., block 1110). In
addition, segments s3 and s6 collectively represent rule R1.
Also, segments s8 and s11 represent rule R2. The rest of the
illustrated segments, namely segments: S1, S2, S5, S10, S12,
S13, S9, and S4, represent regions of the current leaf node
where no rules exist. Hence, they are ignored for any further

30

45

14

processing. Referring back to FIG. 14A, the method 1400, at
1415, assigns cookie values to each unique list of rules asso-
ciated with each segment. For instance, a list of rules includ-
ing rule R1 and rule R2 is assigned a cookie value with respect
to segment s7 (e.g., cookie C1). Also, a new rule (e.g., rule
R3) is created to describe segment s7. In addition, a list of
rules including only rule R1 is assigned a different cookie
value for segments s3 and s6 (e.g., cookie C2). Similarly,
another list of rules including only rule R2 is assigned a
different cookie value for segments s8 and s11 (e.g., cookie
C3). At 1420, the method 1400 outputs a rule set for subse-
quent processing phases according to FIG. 16A. In addition,
at 1420, the method 1400 creates a new rule for each of the
segments and replaces the rules in the current leaf node with
each new rule that is created. It should be noted that every
field of the new rule created describe the complete region of
its corresponding segment.

FIG. 15 illustrates another method 1500 for processing
intersections of rules in a leaf node of a search tree, in accor-
dance with an example embodiment of the present disclosure.
The method 1500 begins at 1505. At 1510, the method 1500
identifies each possible subset of the rules in the current leaf
node that includes intersecting regions. In an example, the
method 1500 can enumerate each possible subset of two or
more rules in the leaf node. The method 1500 then processes
each subset to determine if the subset includes an intersection.
In an example embodiment, the method 1500 identifies an
intersection for a given subset if all the rules in the subset
intersect with each other. For each of the identified intersec-
tion, the method 1500, at 1515, creates and adds a rule to the
leaf node for each identified intersection. It should be noted
that all the fields of the new rule created describe the complete
region of its corresponding intersection.

At 1517, the method 1500 includes prioritizing the added
rules based on a number of intersecting rules associated with
each added rule. A priority of the newly added rules is higher
than the original rules in the current leaf node and a relative
priority amongst the original rules remains the same. The
method, at 1520, assigns a unique cookie value to each rule
including the original rules in the current leaf node and newly
added rules. At 1525, the method includes outputting a rules
set for subsequent processing phases according to method
1601 of FIG. 16B. At 1530, the method ends.

FIG. 16A illustrates a method 1600 for outputting a rules
set for subsequent phases to be processed by a compiler for
compiling a next-phase set of search trees. At 1605, the
method 1600 begins. At 1610, the method 1600 includes
outputting a rules set for subsequent phases from the current
leaf node. In particular, the method 1600 includes, for each
rulein a subject segment of the identified at least one segment,
generating and outputting a rule for subsequent search
phases. The rule includes: i) each rule field of the rule fields
corresponding to the subsequent search phases, and ii) a new
field for the unique cookie value associated with the subject
segment. For each of the generated rules from the subject
segment, method 1600 includes assigning a relative priority
equivalent to a relative priority of the corresponding rule of
the subject segment.

In particular, assuming a 3-tuple rule set as illustrated in
FIG. 12, if a current phase processed FIELD-1 and FIELD-2,
the method 1600 outputs next phase rules including FIEL.D-3

US 9,268,855 B2

15
and a new field associated with the cookie values assigned to
the rules. At 1615, the method 1600 ends. For example, Table
1 illustrated below provides a set of rules for subsequent
phases that are outputted by method 1600 from a leaf node
geometrically represented by FIG. 14C.

TABLE 1

Subsequent Phases Rules
Comments Rule number Cookie Value Field
Corresponding to 1 c2 Rule 17273
Segment S3 and S6)
Corresponding to 2 Cl1 Rule 17273
Segment S7
Corresponding to 3 Cl1 Rule 2772753
Segment S7
Corresponding to 4 C3 Rule 2772753

Segment S8 and S11

FIG. 16B illustrates another method 1601 for outputting a
rules set for subsequent phases to be processed by a compiler
for compiling a next-phase set of search trees. The method
begins at 1620. At 1625, the method 1601 includes, for a
subject original rule of each original rule in the current leaf
node, generating and outputting a rule for subsequent search
phases. The rule includes: 1) each rule field corresponding to
subsequent search phases, and ii) a new field for the unique
cookie value associated with the subject rule. At 1630, the
method 1601 includes, for each intersecting rule in a subject
subset of the identified subsets, generating and outputting a
rule for the subsequent search phases. The rule includes: 1)
each rule field corresponding to the subsequent search phases,
and ii) a new field for the unique cookie value associated with
the subject subset. For each of the generated rules for the
subject subset, method 1601 assigns a relative priority
equivalent to the relative priority of the corresponding inter-
secting rule of the subject subset. At 1635, the method 1601
ends.

For example, Table 2 illustrated below provides a set of
rules for subsequent phases that are outputted by method
1601 from a leaf node geometrically represented by FIG.
14B. As explained above, at 1520, the method 1500 assigns
unique cookie value to newly added rules as well as to original
rules in the current leaf node. In particular, referring to FIG.
14B, after method 1500 ends, there are three rules in the
current leaf node for the current phase, namely: one newly
added rule to represent intersecting region 1480 and two
original rules (R1 & R2). Assuming, a cookie value Cl1 is
assigned to the newly added rule, cookie value C2 is assigned
to original rule R1 and cookie value C3 is assigned to original
rule R3.

TABLE 2

Subsequent Phases Rules
Comments Rule number Cookie Value Field
Corresponding to 1 Cl1 Rule 17273
intersecting region
1480
Corresponding to 2 Cl1 Rule 2572753
intersecting region
1480
Corresponding to 3 c2 Rule 17273
original rule R1
Corresponding to 4 C3 Rule 2772753

original rule R2

10

15

20

25

30

35

40

45

50

55

60

16

As used in this disclosure, a subset of a set can include one
or more than one, including all, members of the set. Further,
as used in this disclosure, a first variable is an increasing
function of a second variable if the first variable does not
decrease and instead generally increases when the second
variable increases. On the other hand, a first variable is a
decreasing function of a second variable if the first variable
does not increase and instead generally decreases when the
second variable increases. In some embodiment, a first vari-
able is an increasing or a decreasing function of a second
variable if, respectively, the first variable is directly or
inversely proportional to the second variable.

It should be understood that the block, flow, network dia-
grams may include more or fewer elements, be arranged
differently, or be represented differently. It should be under-
stood that implementation may dictate the block, flow, net-
work diagrams and the number of block, flow, network dia-
grams illustrating the execution of embodiments described
herein.

It should be understood that elements of the block, flow,
network diagrams described above may be implemented in
software, hardware, or firmware. In addition, the elements of
the block, flow, network diagrams described above may be
combined or divided in any manner in software, hardware, or
firmware. If implemented in software, the software may be
written in any language that can support the embodiments
disclosed herein. The software may be stored on any form of
computer readable medium, such as random access memory
(RAM), read only memory (ROM), compact disk read only
memory (CD-ROM), and other non-transitory forms of com-
puter readable medium. In operation, a general purpose or
application specific processor loads and executes the software
in a manner well understood in the art.

While this invention has been particularly shown and
described with references to example embodiments thereof, it
will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the scope of the invention encompassed by the
appended claims.

The invention claimed is:
1. A method, executed by one or more processors, for
processing a data packet, the method comprising:
receiving the packet;
creating a first request key using information extracted
from the packet;
splitting the first request key into an n number of partial
request keys if at least one predetermined criterion is
met, wherein n>1 and each of the n number of partial
request keys is associated with a distinct set of the infor-
mation extracted from the packet;
sending a non-final request that includes an i-th partial
request key to a corresponding search table of an n
number of search tables, wherein i<n;
receiving a non-final search result from the corresponding
search table;
sending a final request that includes an n-th partial request
key and the non-final search result received in response
to sending the non-final request to the corresponding
search table;
receiving a final search result from the corresponding
search table; and
processing the packet based on processing data included in
the final search result.
2. The method of claim 1, wherein the packet includes at
least one header and the information is extracted from at least
one data field of the at least one header.

US 9,268,855 B2

17

3. The method of claim 2, wherein the distinct set of infor-
mation is extracted from data stored in a set of data fields
corresponding to a subset of the at least one data field of the at
least one header contained in the packet.

4. The method of claim 1, wherein the at least one prede-
termined criterion is at least one of: a processing capability of
a processing system for processing the first request key and a
size of the first request key.

5. The method of claim 4, wherein the size of the first
request key is based on a size and number of data fields from
which the information is extracted.

6. The method of claim 1, wherein the corresponding
search table is a search table including rules that are modified
to be searchable on the set of data fields from which the
distinct set of information is extracted from the packet.

7. The method of claim 1, the non-final request includes an
i-th partial request key and the non-final search result received
in response to sending an (i-1)th non-final request, wherein
1<i<n.

8. The method of claim 1, wherein the non-final search
result includes a cookie identifying a set of rules in the cor-
responding search table that matches an i-th partial request
key and a next set of the distinct set of information to be
matched in a next non-final request, wherein 1<i<n.

9. The method of claim 1, wherein the final search result
identifies a rule that includes instructions used to process the
packet.

10. An apparatus for processing a data packet, the appara-
tus comprising:

a memory; and

one or more processors coupled to the memory, the one or

more processors configured to:

receive the packet;

create a first request key using information extracted
from the packet;

split the first request key into an n number of partial
request keys if at least one predetermined criterion is
met, wherein n>1 and each of the n number of partial
request keys is associated with a distinct set of the
information extracted from the packet;

send a non-final request that includes an i-th partial
request key to a corresponding search table of an n
number of search tables, wherein 1<n;

15

20

25

30

35

40

18

receive a non-final search result from the corresponding
search table; and

send a final request that includes an n-th partial request
key and the non-final search result received in
response to sending the non-final request to the cor-
responding search table;

receive a final search result from the corresponding
search table;

process the packet based on processing data included in
the final search result.

11. The apparatus of claim 10, wherein the packet includes
at least one header and the information is extracted from at
least one data field of the at least one header.

12. The apparatus of claim 11, wherein the distinct set of
information is extracted from data stored in a set of data fields
corresponding to a subset of the at least one data field of the at
least one header contained in the packet.

13. The apparatus of claim 10, wherein the at least one
predetermined criterion is at least one of: a processing capa-
bility of a processing system for processing the first request
key and a size of the first request key.

14. The apparatus of claim 13, wherein the size of the first
request key is based on a size and number of data fields from
which the information is extracted.

15. The apparatus of claim 12, wherein the corresponding
search table is a search table including rules that are modified
to be searchable on the set of data fields from which the
distinct set of information is extracted from the packet.

16. The apparatus of claim 10, the non-final request
includes an i-th partial request key and the non-final search
result received in response to sending an (i-1)th non-final
request, wherein 1<i<n.

17. The apparatus of claim 10, wherein the non-final search
result includes a cookie identifying a set of rules in the cor-
responding search table that matches an i-th partial request
key and a next set of the distinct set of information to be
matched in a next non-final request, wherein 1<i<n.

18. The apparatus of claim 10, wherein the final search
result identifies a rule that includes instructions used to pro-
cess the packet.

